非线性状态估计(SE)的目的是根据电力系统中所有可用的测量值估算复杂的总线电压,通常使用迭代的高斯 - 纽顿方法来解决。在考虑来自相组量测量单元以及监督控制和数据采集系统的输入时,非线性SE会带来一些困难。这些包括数值不稳定性,收敛时间取决于迭代方法的起点以及单个迭代在状态变量数量方面的二次计算复杂性。本文在非线性功率系统SE的增强因子图上介绍了基于图形神经网络的原始SE实现,能够在分支机构和总线上进行测量,以及相法和遗留测量。提出的回归模型在一旦训练的推理时间内具有线性计算复杂性,并且有可能实现分布式。由于该方法是非词语且基于非矩阵的,因此它对高斯求解器容易出现的问题具有弹性。除了测试集的预测准确性外,提出的模型在模拟网络攻击和由于沟通不规则引起的不可观察的情况时表现出了鲁棒性。在这种情况下,预测错误在本地持续存在,对电力系统的其余结果没有影响。
translated by 谷歌翻译
第五代(5G)网络具有加速电源系统过渡到灵活,软焊,数据驱动和智能网格的潜力。凭借对机器学习(ML)/人工智能(AI)功能的不断发展的支持,预计5G网络将启用新颖的以数据为中心的智能电网(SG)服务。在本文中,我们探讨了如何将数据驱动的SG服务与共生关系中的ML/AI-ai-5G网络集成在一起。我们专注于状态估计(SE)作为能源管理系统的关键要素,并专注于两个主要问题。首先,我们以教程的方式介绍了如何将分布式SE与5G核心网络和无线电访问网络体系结构的元素集成在一起的概述。其次,我们介绍并比较了基于以下方面的两种强大的分布式SE方法:i)图形模型和信念传播以及ii)图形神经网络。我们讨论了他们的性能和能力,以考虑到通信延迟,通过5G网络支持接近实时的SE。
translated by 谷歌翻译
状态估计(SE)算法的目标是基于电力系统中的可用测量集来估计复杂的总线电压作为状态变量。因为相量测量单元(PMU)越来越多地用于传输电力系统,所以需要一种快速SE求解器,可以利用PMU高采样率。本文提出培训图形神经网络(GNN),以了解给PMU电压和电流测量作为输入的估计,目的是在评估阶段期间获得快速和准确的预测。使用合成数据集接受GNN,由电力系统中的随机采样的测量集创建并用使用带有PMU求解器的线性SE获得的解决方案来标记它们。所呈现的结果显示了各种测试场景中GNN预测的准确性,并将预测的灵敏度解决对缺失的输入数据。
translated by 谷歌翻译
We propose spectrum-sliced reservoir computer-based (RC) multi-symbol equalization for 32-GBd PAM4 transmission. RC with 17 symbols at the output achieves an order of magnitude reduction in multiplications/symbol versus single output case while maintaining simple training.
translated by 谷歌翻译
We demonstrate transfer learning-assisted neural network models for optical matrix multipliers with scarce measurement data. Our approach uses <10\% of experimental data needed for best performance and outperforms analytical models for a Mach-Zehnder interferometer mesh.
translated by 谷歌翻译
组织病理学依赖于微观组织图像的分析来诊断疾病。组织制备的关键部分正在染色,从而使染料用于使显着的组织成分更具区分。但是,实验室协议和扫描设备的差异导致相应图像的显着混淆外观变化。这种变异增加了人类错误和评估者间的变异性,并阻碍了自动或半自动方法的性能。在本文中,我们引入了一个无监督的对抗网络,以在多个数据采集域中翻译(因此使)整个幻灯片图像。我们的关键贡献是:(i)一种对抗性体系结构,该架构使用信息流分支通过单个发电机 - 歧视器网络在多个域中学习,该信息流分支优化可感知损失,以及(ii)在培训过程中包含一个附加功能提取网络,以指导指导指导的额外功能提取网络。转换网络以保持组织图像中的所有结构特征完整。我们:(i)首先证明了提出的方法对120例肾癌的H \&e幻灯片的有效性,以及(ii)显示了该方法对更一般问题的好处,例如基于灵活照明的自然图像增强功能和光源适应。
translated by 谷歌翻译
在计算机愿景的许多领域,转向端到端深度学习引起了前所未有的进展。然而,存在输入图像过大的情况,认为不可能实现端到端的方法。在本文中,我们介绍了一个新的网络,放大网络(磁铁),其可以独立于输入图像尺寸训练端到端。磁铁以新的方式将卷积神经网络与可微分的空间变压器相结合,以便在数十亿像素中从图像导航和成功学习。从普通明田显微镜的放大性,磁铁处理图像的下采样版本,没有监督的吸引力,并且没有监督了如何识别可能对手头的任务有价值的区域,递归地重复每个过程提取的斑块。我们的结果在公开可用的Camelyon16和Camelyon17数据集首先得到了磁铁的有效性和所提出的优化框架,第二个,展示了磁铁的内置透明度的优势,对于医学诊断等关键过程至关重要的属性。
translated by 谷歌翻译
无意识和自发的,微小表达在一个人的真实情绪的推动中是有用的,即使尝试隐藏它们。由于它们短的持续时间和低强度,对微表达的识别是情感计算中的艰巨任务。基于手工制作的时空特征的早期工作最近被不同的深度学习方法取代了现在竞争最先进的性能。然而,捕获本地和全球时空模式的问题仍然挑战。为此,本文我们提出了一种新颖的时空变压器架构 - 据我们所知,是微表达识别的第一种纯粹变压器的方法(即任何卷积网络使用的方法)。该架构包括用于学习空间模式的空间编码器,用于时间维度分析的时间聚合器和分类头。三种广泛使用的自发性微表达数据集,即Smic-HS,Casme II和SAMM的综合评估表明,该方法始终如一地优于现有技术,是发表在微表达上发表文献中的第一个框架在任何上述数据集上识别以实现未加权的F1分数大于0.9。
translated by 谷歌翻译